Mice Deficient of Glutamatergic Signaling from Intrinsically Photosensitive Retinal Ganglion Cells Exhibit Abnormal Circadian Photoentrainment
نویسندگان
چکیده
Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF) visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR) via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP) from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay) in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods). Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.
منابع مشابه
Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks
Light is a powerful entrainer of circadian clocks in almost all eukaryotic organisms promoting synchronization of internal circadian rhythms with external environmental light-dark (LD) cycles. In mammals, the circadian system is organized in a hierarchical manner, in which a central pacemaker in the suprachiasmatic nucleus (SCN) synchronizes oscillators in peripheral tissues. Recent evidence de...
متن کاملApoptosis Regulates ipRGC Spacing Necessary for Rods and Cones to Drive Circadian Photoentrainment
The retina consists of ordered arrays of individual types of neurons for processing vision. Here, we show that such order is necessary for intrinsically photosensitive retinal ganglion cells (ipRGCs) to function as irradiance detectors. We found that during development, ipRGCs undergo proximity-dependent Bax-mediated apoptosis. Bax mutant mice exhibit disrupted ipRGC spacing and dendritic strat...
متن کاملRdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosoph...
متن کاملDiminished pupillary light reflex at high irradiances in melanopsin-knockout mice.
In the mammalian retina, a small subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, express the opsin-like protein melanopsin, and project to brain nuclei involved in non-image-forming visual functions such as pupillary light reflex and circadian photoentrainment. We report that in mice with the melanopsin gene ablated, RGCs retrograde-labeled from the suprachiasmatic nuc...
متن کاملA Role for Melanopsin in Alpha Retinal Ganglion Cells and Contrast Detection
Distinct subclasses of retinal ganglion cells (RGCs) mediate vision and nonimage-forming functions such as circadian photoentrainment. This distinction stems from studies that ablated melanopsin-expressing intrinsically photosensitive RGCs (ipRGCs) and showed deficits in nonimage-forming behaviors, but not image vision. However, we show that the ON alpha RGC, a conventional RGC type, is intrins...
متن کامل